p-group, metabelian, nilpotent (class 3), monomial
Aliases: C24.6(C2×C4), (C2×D4).270D4, C23.65(C22×C4), (C22×C4).27C23, M4(2)⋊4C4⋊13C2, C23.35(C22⋊C4), C42⋊C2.5C22, C22.11C24.2C2, C4.2(C22.D4), (C22×D4).12C22, C22.7(C42⋊C2), C2.17(C23.34D4), (C2×M4(2)).164C22, (C2×C4).235(C2×D4), (C2×C22⋊C4).5C4, C22⋊C4.50(C2×C4), (C2×C4.D4).7C2, (C2×C4).312(C4○D4), C22.37(C2×C22⋊C4), SmallGroup(128,561)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.6(C2×C4)
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e2=b, f4=d, ab=ba, ac=ca, ad=da, ae=ea, faf-1=abd, bc=cb, fbf-1=bd=db, be=eb, ece-1=cd=dc, cf=fc, de=ed, df=fd, fef-1=cde >
Subgroups: 316 in 136 conjugacy classes, 50 normal (8 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, D4, C23, C23, C23, C42, C22⋊C4, C22⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C22×C4, C2×D4, C2×D4, C24, C4.D4, C2×C22⋊C4, C42⋊C2, C4×D4, C2×M4(2), C22×D4, M4(2)⋊4C4, C2×C4.D4, C22.11C24, C24.6(C2×C4)
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C4○D4, C2×C22⋊C4, C42⋊C2, C22.D4, C23.34D4, C24.6(C2×C4)
Character table of C24.6(C2×C4)
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ9 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | i | i | i | -i | -i | -i | -i | i | linear of order 4 |
ρ10 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | i | -i | -i | -i | -i | i | i | i | linear of order 4 |
ρ11 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -i | -i | i | -i | i | i | -i | i | linear of order 4 |
ρ12 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -i | i | -i | -i | i | -i | i | i | linear of order 4 |
ρ13 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -i | -i | -i | i | i | i | i | -i | linear of order 4 |
ρ14 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -i | i | i | i | i | -i | -i | -i | linear of order 4 |
ρ15 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | i | i | -i | i | -i | -i | i | -i | linear of order 4 |
ρ16 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | i | -i | i | i | -i | i | -i | -i | linear of order 4 |
ρ17 | 2 | 2 | -2 | -2 | 2 | -2 | -2 | 2 | 2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | -2 | -2 | 2 | 2 | -2 | -2 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | 2 | -2 | -2 | 2 | -2 | 2 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | 2 | -2 | -2 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ21 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | 0 | 2i | 0 | 0 | 2i | -2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ22 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | -2i | 0 | -2i | 2i | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ23 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | 2i | 0 | -2i | -2i | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ24 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | 0 | -2i | 0 | 0 | -2i | 2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ25 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | -2i | 0 | 2i | 2i | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ26 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 2 | 0 | -2i | 0 | 0 | 2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ27 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 2i | 0 | 2i | -2i | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ28 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 2 | 0 | 2i | 0 | 0 | -2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ29 | 8 | -8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 9)(2 10)(3 15)(4 16)(5 13)(6 14)(7 11)(8 12)
(1 5)(3 7)(9 13)(11 15)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 9)(8 10)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)
(1 7 5 3)(2 10)(4 12)(6 14)(8 16)(9 11 13 15)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
G:=sub<Sym(16)| (1,9)(2,10)(3,15)(4,16)(5,13)(6,14)(7,11)(8,12), (1,5)(3,7)(9,13)(11,15), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,9)(8,10), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16), (1,7,5,3)(2,10)(4,12)(6,14)(8,16)(9,11,13,15), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)>;
G:=Group( (1,9)(2,10)(3,15)(4,16)(5,13)(6,14)(7,11)(8,12), (1,5)(3,7)(9,13)(11,15), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,9)(8,10), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16), (1,7,5,3)(2,10)(4,12)(6,14)(8,16)(9,11,13,15), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16) );
G=PermutationGroup([[(1,9),(2,10),(3,15),(4,16),(5,13),(6,14),(7,11),(8,12)], [(1,5),(3,7),(9,13),(11,15)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,9),(8,10)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16)], [(1,7,5,3),(2,10),(4,12),(6,14),(8,16),(9,11,13,15)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)]])
G:=TransitiveGroup(16,233);
(1 7)(2 4)(3 5)(6 8)(9 11)(10 16)(12 14)(13 15)
(2 6)(4 8)(10 14)(12 16)
(9 13)(10 14)(11 15)(12 16)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)
(1 11)(2 16 6 12)(3 13)(4 10 8 14)(5 15)(7 9)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
G:=sub<Sym(16)| (1,7)(2,4)(3,5)(6,8)(9,11)(10,16)(12,14)(13,15), (2,6)(4,8)(10,14)(12,16), (9,13)(10,14)(11,15)(12,16), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16), (1,11)(2,16,6,12)(3,13)(4,10,8,14)(5,15)(7,9), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)>;
G:=Group( (1,7)(2,4)(3,5)(6,8)(9,11)(10,16)(12,14)(13,15), (2,6)(4,8)(10,14)(12,16), (9,13)(10,14)(11,15)(12,16), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16), (1,11)(2,16,6,12)(3,13)(4,10,8,14)(5,15)(7,9), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16) );
G=PermutationGroup([[(1,7),(2,4),(3,5),(6,8),(9,11),(10,16),(12,14),(13,15)], [(2,6),(4,8),(10,14),(12,16)], [(9,13),(10,14),(11,15),(12,16)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16)], [(1,11),(2,16,6,12),(3,13),(4,10,8,14),(5,15),(7,9)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)]])
G:=TransitiveGroup(16,272);
Matrix representation of C24.6(C2×C4) ►in GL8(ℤ)
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
-1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
-1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 |
0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
-1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 |
G:=sub<GL(8,Integers())| [0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0],[-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1],[0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0],[0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0] >;
C24.6(C2×C4) in GAP, Magma, Sage, TeX
C_2^4._6(C_2\times C_4)
% in TeX
G:=Group("C2^4.6(C2xC4)");
// GroupNames label
G:=SmallGroup(128,561);
// by ID
G=gap.SmallGroup(128,561);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,422,58,2019,718,2028,124]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^2=b,f^4=d,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,f*a*f^-1=a*b*d,b*c=c*b,f*b*f^-1=b*d=d*b,b*e=e*b,e*c*e^-1=c*d=d*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=c*d*e>;
// generators/relations
Export